
Futureproof Static Memory Planning

CHRISTOS P. LAMPRAKOS, National Technical University of Athens, Greece and KU Leuven, Belgium

PANAGIOTIS XANTHOPOULOS, National Technical University of Athens, Greece

MANOLIS KATSARAGAKIS, National Technical University of Athens, Greece and KU Leuven, Belgium

SOTIRIOS XYDIS and DIMITRIOS SOUDRIS, National Technical University of Athens, Greece

FRANCKY CATTHOOR, National Technical University of Athens, Greece and KU Leuven, Belgium

The NP-complete combinatorial optimization task of assigning offsets to a set of buffers with known sizes and lifetimes so as to

minimize total memory usage is called dynamic storage allocation (DSA). Existing DSA implementations bypass the theoretical

state-of-the-art algorithms in favor of either fast but wasteful heuristics, or memory-efficient approaches that do not scale beyond one

thousand buffers. The “AI memory wall”, combined with deep neural networks’ static architecture, has reignited interest in DSA. We

present idealloc, a low-fragmentation, high-performance DSA implementation designed for million-buffer instances. Evaluated on a

novel suite of particularly hard benchmarks from several domains, idealloc ranks first against four production implementations in

terms of a joint effectiveness/robustness criterion.

CCS Concepts: • Software and its engineering→ Allocation / deallocation strategies; Compilers.

Additional Key Words and Phrases: dynamic storage allocation, combinatorial optimization, static memory planning, offset assignment

ACM Reference Format:
Christos P. Lamprakos, Panagiotis Xanthopoulos, Manolis Katsaragakis, Sotirios Xydis, Dimitrios Soudris, and Francky Catthoor.

2025. Futureproof Static Memory Planning. ACM Trans. Program. Lang. Syst. 62, 4, Article 111 (August 2025), 29 pages. https://doi.org/

XXXXXXX.XXXXXXX

1 Introduction

Deep learning is causing significant shifts in professional and civilian life. Several technical challenges, however,

remain open. For instance, there is a profound asymmetry between progress in compute capability and memory

capacity/bandwidth [6]. This so-called “AI memory wall” has sparked substantial research and engineering efforts

targeting the memory effectiveness of deep learning. The particular line of work in scope for this paper deals with

assigning offsets to a set of buffers with known sizes and lifetimes in order to pack them in as small an address space

as possible [1, 8, 14, 15, 17, 18, 21, 27, 29]. In deep learning such problems appear thanks to (i) neural networks’ static

architecture and (ii) hardware accelerators’ physical memory contiguity.

Authors’ Contact Information: Christos P. Lamprakos, cplamprakos@microlab.ntua.gr, National Technical University of Athens, Greece and KU Leuven,

Belgium; Panagiotis Xanthopoulos, panos0511@gmail.com, National Technical University of Athens, Greece; Manolis Katsaragakis, mkatsaragakis@

microlab.ntua.gr, National Technical University of Athens, Greece and KU Leuven, Belgium; Sotirios Xydis, sxydis@microlab.ntua.gr; Dimitrios Soudris,

dsoudris@microlab.ntua.gr, National Technical University of Athens, Greece; Francky Catthoor, francky.catthoor@imec.be, National Technical University

of Athens, Greece and KU Leuven, Belgium.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

ar
X

iv
:2

50
4.

04
87

4v
1

 [
cs

.O
S]

 7
 A

pr
 2

02
5

HTTPS://ORCID.ORG/0000-0002-3370-857X
HTTPS://ORCID.ORG/0000-0001-8116-3503
HTTPS://ORCID.ORG/0000-0003-3151-2730
HTTPS://ORCID.ORG/0000-0002-6930-6847
HTTPS://ORCID.ORG/0000-0002-3599-8515
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0002-3370-857X
https://orcid.org/0000-0001-8116-3503
https://orcid.org/0000-0003-3151-2730
https://orcid.org/0000-0002-6930-6847
https://orcid.org/0000-0002-3599-8515

2 Lamprakos et al.

Nevertheless, beyond providing motivation for what shall be presented, deep learning is not of the essence here.

The problem is old and well-studied [2–5, 9, 10]. It is known as dynamic storage allocation (DSA), a variation of

two-dimensional bin packing. DSA has been proven NP-complete.

1.1 Against a Common Misunderstanding

Despite its name, DSA is a static problem, in the sense of having available all the information that it needs from

the outset. “Dynamic storage allocation” has also been used for the dynamic variant (what malloc implementations

deal with) [22, 23, 28], causing considerable confusion. We shall be using “DSA”, “memory planning”, “static offset

assignment” and “static memory allocation” interchangeably in this text. In a similar vein, we will be referring to DSA

implementations, i.e., programs solving DSA instances, as “allocators”. Dynamic non-moving virtual memory allocators

such as GNU’s malloc are out of scope—we use “OS allocators” in the few times that we must mention them.

1.2 Motivation and Related Work

We are concerned with real-world implementations of DSA, their effectiveness, efficiency and robustness in the face of

arbitrarily large inputs. Our founding assumption is that sooner or later, in deep learning or elsewhere, DSA instances

comprising millions of buffers will emerge. For instance, large language models are already pushing compiler engineers

to come up with ever more aggressive optimizations, yielding complex and massive memory allocation patterns in

return [7, 8]. Another example is the Linux user applications domain, where malloc traces are used for off-line analysis

and/or optimization [12, 13, 16, 19, 20, 24].

Our main observation after surveying the state-of-the-art (SOTA) was that allocators are bypassing the algorithms

published in the DSA literature in favor of schemes that are simpler to implement. Alternatives can be sorted in two

broad categories: heuristics [14, 15, 21, 26] and isomorphisms [17, 18, 25], e.g., integer linear programming, machine

learning regression, simulated annealing, and hill-climb optimization. We ask what costs accompany circumventing the

decades-old literature around an NP-complete problem for which one seeks a practical, general solution. The only way

to find out if such costs exist would be to build an allocator informed by that literature, and then evaluate it rigorously

against the SOTA. Hence idealloc, the allocator at this paper’s center, was born. In terms of the heuristics/isomorphisms

dichotomy, it is a stochastic bootstrapped heuristic.

A second observation was that apart from the micro-benchmarks published by the authors of minimalloc, a SOTA

allocator [18], no DSA benchmark suites exist. We thus formed a novel set of benchmarks ranging from hundred- to

half-a-million buffers and used it, along with the aforementioned micro-benchmarks, for evaluation. From a strict

effectiveness-only perspective idealloc rarely beats all of its competition, comprising minimalloc and three other

production allocators. But from a robustness and efficiency perspective that same competition (with one exception)

rarely manages to even produce a solution in reasonable time. Under a joint ranking criterion incorporating both

perspectives idealloc achieves top score.

1.3 Contributions

Along the course of designing, developing and testing idealloc, we gathered a multifaceted set of insights. On the

algorithmic front, we identified and fixed several blind spots of the original theorems, published by Buchsbaum et al.

in 2003 [2]
1
. We also devised a second set of algorithms, related not to the DSA core itself, but to forming a scalable

1
We have exchanged emails with the algorithm’s original authors, who have validated that (i) transition from theory to practice always involves trickiness

and (ii) there are no other known implementations of their work.

Manuscript submitted to ACM

Futureproof Static Memory Planning 3

infrastructure around it. On the benchmarks front, we collected a novel suite of challenging, large-scale inputs from

domains such as Linux databases, parallel training of deep learning models, and distributed inference.

All in all, our contributions are:

(1) idealloc, a DSA implementation designed to handle inputs of arbitrary size and complexity

(2) crucial theoretical extensions to the algorithms on which idealloc is based

(3) various insights and techniques of general applicability to future DSA design tasks

(4) the first rigorous evaluation of the DSA SOTA

Section 2 provides background knowledge on DSA. Section 3 describes the core algorithm powering idealloc. The

design of our allocator is exposed in detail in Section 5, and the experiments conducted for evaluating it are reported in

Section 6. Section 7 discusses limitations and ideas for future work, and Section 8 concludes our exposition.

2 Dynamic Storage Allocation

Rectangle packing [11] is the combinatorial optimization problem of placing rectangles of various widths and heights

into arrangements where (i) no two rectangles overlap and (ii) the arrangement’s enclosing rectangle has minimum

height. Rectangles may move in two degrees of freedom (vertically or horizontally). This problem is NP-complete.

B

A

C

D

E0x1

0x2

0x3

0x4

0x5

0x6

0x7

Logical time

P
h

ys
ic

al
 a

d
d

re
ss

es

Max load = 6

Makespan = 7

Fig. 1. A more detailed illustration of the dynamic storage allo-
cation (DSA) problem. This instance comprises five buffers and a
(suboptimal) solution, i.e., offset assignment to each of the buffers,
is depicted.

DSA is a constrained variation of rectangle packing.

It owes its name to the interpretation of one dimension

as available address space, and the other as time. Each

rectangle encodes a pair of requests for the allocation

and deallocation of some specific amount of memory at

specific points in time. Allocators have no power over

the timing of incoming requests, so the only degree of

freedom they have is the spatial one. DSA is NP-complete

in the general case of non-uniform request sizes. A toy

illustration comprising three rectangles is shown at Fig-

ure 1. If the horizontal axis represents time, the allocator

may move rectangles vertically.

A DSA input comprises buffers defined as (ℎ, 𝑡𝑠 , 𝑡𝑒)
tuples, where ℎ stands for buffer size. All of the data

involved are discrete, more precisely non-negative inte-

gers. A buffer is live in the open interval (𝑡𝑠 , 𝑡𝑒). We refer

to (𝑡𝑠 , 𝑡𝑒) as the buffer’s lifetime. We refer to 𝑡𝑠 and 𝑡𝑒 as

allocation time and de-allocation time respectively. A
buffer’s lifespan, i.e., the size of its lifetime, i.e., the total number of time units at which the buffer is live, is computed

as below:

𝑙 = 𝑡𝑒 − 𝑡𝑠 − 1 (1)

Two buffers overlap if their respective lifetimes overlap. An input’s load at moment 𝑡 is the size sum of all buffers

live at 𝑡 . We refer to the maximum load measured across all 𝑡 asmax load (𝐿). In Figure 1, the max load is the length of

the cross-hatched stripe. The small gap between the two pieces does not contribute to it because it does not belong to

Manuscript submitted to ACM

4 Lamprakos et al.

any buffer, it’s just unused space. By placementwe mean annotating an input’s buffers with valid offsets. A placement’s

makespan ormax memory usage (𝑀) is the address space size needed to fit all buffers. Fragmentation (𝐹) is the

difference between an input’s max load and the actual makespan of some placement (7 − 6 = 1 byte in Figure 1):

𝐹 = 𝑀 − 𝐿 (2)

1 Function IntervalGraphColoring(𝐵)

// A set of same-size buffers.

input : 𝐵 = { 𝑏 | 𝑏 = (ℎ, 𝑡𝑠 , 𝑡𝑒) }
// A valid buffer-offset mapping.

output : 𝑂 = { 𝑜 | 𝑜 ∈ N : OffsetsValid(B, O) }

2 𝑂 ← HashMap.new();

// Buffer-row mapping.

3 live← HashMap.new();

// Returns lowest free row upon pop().

4 free← PriorityQueue.new();

// To be used if no free row exists.

5 next_row← 0;

// (De-)allocations priority queue.

6 evts← GetEvents(𝐵);

// Each .pop() spawns an “e”.

7 while evts.pop() do
8 if IsAlloca(e) then
9 if free.empty() then
10 offset← next_row;

11 next_row += 1;

12 else
13 offset← free.pop();

14 end

15 live.insert((e.buff, offset));

16 𝑂.insert((e.buff, offset));

17 else
18 freed_row← live.remove(e.buff);

19 free.push(freed_row);

20 end

21 end

22 return O;

23 end

Fig. 2. Interval Graph Coloring.

The NP-completeness of DSA has led researchers

toward approximation algorithms. The quality of each

algorithm is expressed as upper bounds for fragmenta-

tion. For instance, a 6-approximation algorithm guar-

antees that it will never produce a makespan six times

bigger than the max load. The current SOTA in DSA

is a (2 + 𝜖)-approximation algorithm by Buchsbaum

et al [2]. 𝜖 is described as a “sufficiently small” real

number and is input-dependent.

2.1 Elementary Cases

There are certain instances of the problemwhich can be

solved optimally, i.e., with zero fragmentation. One can

recognize such instances in linear time. It suffices to

traverse the input once, and check if (i) any overlapping

buffers, or (ii) more than one buffer sizes exist. If no

buffers overlap, they can all be placed at offset zero.

If all buffers share the same size, the problem is

reduced to meeting room scheduling and can be solved

with greedy interval graph coloring (IGC). Since we

shall make use of IGC later, we remind it to the reader

via Figure 2.

2.2 Heuristics

In Section 1 we claimed that existing DSA implemen-

tations can be categorized as either heuristics or iso-

morphisms. While “isomorphisms” is a deliberately

vague term, by “heuristics” we mean a specific family

of solutions.

In this paper, we define a heuristic as a two-phase

operation comprising (i) a sorting step and (ii) a fitting

step. In the first step, buffers are ordered according to

some arbitrarily complex criterion, e.g., decreasing size,

increasing allocation time, etc. Then, during the fitting

step, the sorted buffers are traversed and assigned an

Manuscript submitted to ACM

Futureproof Static Memory Planning 5

offset in a best- or first-fit fashion. These fits differ from what the corresponding terms mean in the OS allocators context,

since DSA also cares about lifetimes. By rejecting gaps lower in the address space for better-sized gaps higher up, DSA

best-fit risks being unable to fill the lower gaps later because of conflicts in the temporal domain. A counterintuitive

fact stemming from this is that first-fit often incurs less fragmentation than best-fit. Figure 3 describes first-fit in detail.

3 The Boxing Algorithm by Buchsbaum et al.

1 Function FirstFit(𝐵)

// A sorted set of buffers.

input :𝐵 = { 𝑏 | 𝑏 = (ℎ, 𝑡𝑠 , 𝑡𝑒) }
// A valid offset-buffer mapping.

output :𝑂 = { 𝑜 | 𝑜 ∈ N : OffsetsValid(B, O) }

2 𝑂 ← HashMap.new();

// Each .pop() spawns a “buff”.

3 while 𝐵.pop() do
// For traversing the address space.

4 run← 0;

// Scan placed, conflicting buffers

// in ascending offset order.

5 for conf in GetConflicts(𝑂, buff) do
// conf.offset - run ≥ buff.size

6 if Fits(buff, run, conf) then
7 break;

8 else
// conf.offset + conf.size

9 run← GetNextAddr(conf);

10 end

11 end

12 𝑂.insert((buff, run));

13 end

14 return 𝑂 ;

15 end

Fig. 3. First-fit placement.

The best known DSA “algorithm” is a 2-approximation

technique published more than two decades ago [2].

We put quotes around the term since, as will be shown

in this section, we are dealing in fact with a complex

system of interacting algorithms. From now on we will

be referring to that original paper as “BA”.

We have studied BA once more in the past [12]. Our

previous implementation, despite being an indispens-

able research milestone, carried serious weaknesses.

First of all, we never published its source code. More-

over, it suffered from severe instability, e.g., yielding

out-of-memory errors for two thousand buffers, but

converging as it should for twenty thousand. Most

importantly, it was incorrect: BA has latent invariants

whichwe had not discovered back then. Violating those

invariants may lead to convergence, but the converged-

upon output will be far from ideal. In consequence,

we were getting nonsensical results where on-line al-

gorithms were incurring less fragmentation than our

off-line, supposedly SOTA allocator
2
.

This paper aims to establish an open-source refer-

ence implementation that is correct, robust and fast.

The present section handles the part about correctness.

We shall do a guided tour of BA, which is idealloc’s

beating heart. We will clarify which parts of it we kept,

which ones we modified and how, and what novel ad-

ditions we had to make in order to bring it to life.

3.1 Overview

The most important thing to understand about BA is

that it is incomplete. In the heuristics terminology in-

troduced in Section 2.2, BA is a partial sorting step. It accepts a set of buffers as input, and yields a set of Matryoshka

doll-like boxes as output. These boxes contain other boxes, and so on until some level of depth where subsets of the

2
This was an “intellectual abstract” paper, with the focus being on the ideas instead of the experiments. The main idea was to view OS allocators as

black-box DSA agents and see how they fare against a “standard” DSA solution.

Manuscript submitted to ACM

6 Lamprakos et al.

Fig. 4. An illustration of BA’s main idea, that is, boxing buffers into Matryoshkas. The buffers on the left have 4! = 24 possible
orderings. By boxing them into two distinct groups the number of possible orderings has been reduced by a factor of 3. In their paper,
Buchsbaum et al. do not care about this reduction in complexity; they use the boxes to reason about worst-case fragmentation.

original input’s buffers reside (see Figure 4). To keep consistent with BA’s terminology, we will be referring to both

the input’s buffers and the output’s boxes as jobs. The key characteristic of the outermost jobs is that they all share

the same size, and as Section 2.1 notes, they can be optimally placed with IGC. How offsets given to the top-level

Matryoshkas should bleed through each boxing layer, eventually to reach the original buffers at the bottom, is not

treated by BA’s authors. We shall return to this question in Section 4. For now, let us focus on the process followed to

convert BA into source code.

Like any mathematics paper, BA comprises lemmas, theorems and corollaries. We will be referring to these constructs

collectively as functional units (FUs). FUs are numbered in the order that they appear in the paper: Lemma 1 is followed

by Theorem 2, then comes Lemma 3 and so on.

Each FU comprises a statement, and a proof testifying to the correctness of the statement. The rather convenient

characteristic of BA is that all of its proofs are made by construction. Every step of every proof either calculates

something (e.g., “compute the min/max ratio of input job sizes”) or invokes some other FU. Thus, to implement BA it

suffices to view each FU as a program function, and each proof as the corresponding function body. To give a concrete

example, consider Corollary 17, which we initially took to be BA’s “entry point”:

COROLLARY 17. There exists a polynomial-time algorithm that takes an arbitrary set 𝑋 of jobs as input and produces

a feasible solution to DYNAMIC STORAGE ALLOCATION on 𝑋 with makespan at most (1 +𝑂 ((ℎ𝑚𝑎𝑥/𝐿)1/7))𝐿.

Proof. Apply Theorem 16 to 𝑋 with 𝜖 = (ℎ𝑚𝑎𝑥/𝐿)1/7. □

Manuscript submitted to ACM

Futureproof Static Memory Planning 7

START

LOG2r >= 1/ε

COMPUTE
MAX/MIN RATIO

(r)

PARTITION JOBS

COROLLARY 15
ON XS

MERGE JOBS

COROLLARY 15

END

YESNO

Fig. 5. T16 flow diagram.

Recall from Section 2 that 𝐿 stands for the input’s

max load. Thus if Corollary 17 were a function, its

input would be a set of jobs, and its output would be

a set of valid offsets with which to annotate the input.

Moreover, its body would comprise (i) a computation

of 𝜖 and (ii) an invocation of Theorem 16.

Though Corollary 17 proved inappropriate as an

entry point, it was useful in the sense of fixing our

attention to Theorem 16. To that FU we now turn
3
.

As regards its proof, we omit mathematical arguments

in between computational steps. We make omissions

explicit via the symbol “[...]”.

THEOREM 16. Let 𝜖 ∈ (0, 1]. There exist a constant
𝑐 and a polynomial-time algorithm that takes 𝜖 and an

arbitrary set 𝑋 of jobs as input and produces a feasible

solution to DYNAMIC STORAGE ALLOCATION on 𝑋

with makespan at most (1 + 𝑐𝜖)𝐿 + 𝑂 (ℎ𝑚𝑎𝑥/𝜖6).

Proof. [...] We are going to apply Corollary 15 re-

peatedly, boxing the smallest jobs so as to increase the

minimum job height ℎ𝑚𝑖𝑛 until it gets close enough to

the maximum job height ℎ𝑚𝑎𝑥 that we can finish with

a last application of Corollary 15.

[...] Let 𝑟 denote the rationℎ𝑚𝑎𝑥/ℎ𝑚𝑖𝑛 . Assume first

that (𝑙𝑜𝑔2𝑟)2 ≥ 1/𝜖 , and set 𝜇 = 𝜖/(𝑙𝑜𝑔2𝑟)2 and 𝐻 =

⌈𝜇5ℎ𝑚𝑎𝑥/(𝑙𝑜𝑔2𝑟)2⌉. Consider the partition𝑋 = 𝑋𝑠 ∪ 𝑋𝑙 , where𝑋𝑠 denotes the jobs of height at most 𝜇𝐻 and𝑋𝑙 = 𝑋 \ 𝑋𝑠 .
Now apply Corollary 15 to 𝑋𝑠 with box-height parameter 𝐻 and error parameter 𝜇. This yields a set 𝐵𝑠 of boxes of

height 𝐻 into which the jobs of 𝑋𝑠 fit such that [...].
Now consider 𝐵𝑠 as a set of jobs and the revised problem on 𝑋 ′ = 𝐵𝑠 ∪ 𝑋𝑙 . [...] Iterate the above boxing of small

jobs, each time using new error parameter 𝜇′ = 𝜖/(𝑙𝑜𝑔2𝑟 ′)2 until it yields a problem 𝑋 ∗ with minimum job height ℎ∗
𝑚𝑖𝑛

for which the ratio 𝑟∗ = ℎ𝑚𝑎𝑥/ℎ∗𝑚𝑖𝑛
is such that (𝑙𝑜𝑔2𝑟∗)2 < 1/𝜖 . [...]

Now apply Corollary 15 to all of 𝑋 ∗ with box-height parameter 𝐻 = ℎ𝑚𝑎𝑥/𝜖 [...] and error parameter 𝜖 ; this is the

“last application” of Corollary 15 to which we alluded earlier. [...] □

It must now be obvious that Theorem 16 is the crux of BA, i.e., its “main” function. It accepts an arbitrary set of jobs

and a real number, and produces the corresponding DSA solution. The following remarks apply:

• the execution of Theorem 16 is governed by 𝜖 , ℎ𝑚𝑖𝑛 and ℎ𝑚𝑎𝑥 . Everything else is a function of these three

quantities.

3
The numbering of FUs in the original BA publication carries an implicit indication of strength, i.e., width of applicability and/or degree of approximation.

Lemma 1 operates on unit-size jobs that are all live at the same time. Theorem 2 treats unit-size jobs with arbitrary lifespans, thus removing the

simultaneous liveness constraint and widening its applicability. Theorem 16 deals with arbitrary input sets and guarantees solutions with makespan at

most (1+𝑐𝜖)𝐿 + 𝑂 (ℎ𝑚𝑎𝑥 /𝜖6) for some constant 𝑐 and some real 𝜖 . The strongest algorithm in the paper is featured in Theorem 19, which nevertheless

cannot be implemented as a computer program (see the Appendix for an elaboration).

Manuscript submitted to ACM

8 Lamprakos et al.

• the actual output of Theorem 16 is not a complete DSA solution. As we can see, the proof is built around repeated

applications of Corollary 15, and terminates with such an application. According to the proof’s own phrasing,

however, Corollary 15 produces boxes; not offsets.

• the loop that is executed while (𝑙𝑜𝑔2𝑟)2 ≥ 1/𝜖 demands that ℎ𝑚𝑖𝑛 ≤ 𝜇𝐻 , else 𝑋𝑠 turns out empty. Then 𝐵𝑠 is

empty as well, the ratio 𝑟 remains unchanged, and the loop never ends.

The first remark is self-explanatory. As regards the second remark, its validity does not harm the purpose of BA’s

authors. Their argument rather exploits the fact that Corollary 15 produces same-height boxes. Recall from Section 2.1

that IGC applied on identical sizes yields zero fragmentation, i.e., the solution’s makespan equals the input’s max load.

In the parts of the proof that we have omitted for brevity, the authors bound the max load of Corollary 15’s output, thus

bounding the makespan of the boxes’ contents as a result. From the perspective of a programmer who wants to actually

solve DSA, implementing Theorem 16 is insufficient. Hence the first paragraph of the present subsection.

The final remark is in fact the opening of the rabbit hole which led us to discovering BA’s latent invariants.

Interlude: Programming as Archaeology. Allow us to clarify our stance before proceeding. From the outset of our efforts

to this day, we have put our ultimate trust on BA’s superiority. We view its FUs as priceless ancient artifacts buried in

the sands of abstract thought, and our work as that of an archaeologist who must unearth those artifacts in the most

intact form possible. This act of excavation, this transition from theory to practice, from the abstract to the executable,

unavoidably entails points of necessary intervention. Our unshakeable trust on BA dictates (i) minimizing the number

and degree of said interventions, as well as (ii) being certain about their soundness. It is these two implications that the

following Section serves. A formal treatment of our findings is beyond both our powers and intentions.

3.2 Latent Invariants

By this Section’s title we are referring to the following non-trivial conclusions:

(1) the real-valued 𝜖 of Theorem 16 has an input-dependent range of “legal” values which can be greater than 1.

(2) the real-valued 𝜇 of Theorem 16 has a universal upper bound equal to

√
5−1
2

.

(3) it is necessary that every input satisfies the inequality ℎ𝑚𝑎𝑥 ≥ ⌈2216.53 · ℎ𝑚𝑖𝑛⌉.

We shall show that all three invariants can be derived from BA’s original text without any additional moves. Let us

start with some definitions from the proof of Theorem 16, particularly that branch of execution where (𝑙𝑜𝑔2𝑟)2 ≥ 1/𝜖 :

𝑟 =
ℎ𝑚𝑎𝑥

ℎ𝑚𝑖𝑛
(3)

𝜇 =
𝜖

(𝑙𝑜𝑔2𝑟)2
(4)

𝐻 = ⌈𝜇5ℎ𝑚𝑎𝑥/(𝑙𝑜𝑔2𝑟)2⌉ (5)

As we have already remarked, in order for that branch to avoid looping forever, it should hold that ℎ𝑚𝑖𝑛 ≤ 𝜇𝐻 . Let

us unwrap this expression:

Manuscript submitted to ACM

Futureproof Static Memory Planning 9

ℎ𝑚𝑖𝑛 ≤ 𝜇𝐻
(5)

==⇒

ℎ𝑚𝑖𝑛 ≤ 𝜇 ⌈𝜇5ℎ𝑚𝑎𝑥/(𝑙𝑜𝑔2𝑟)2⌉
𝜇 > 0

=====⇒

ℎ𝑚𝑖𝑛

𝜇
≤ ⌈𝜇5ℎ𝑚𝑎𝑥/(𝑙𝑜𝑔2𝑟)2⌉ =⇒

ℎ𝑚𝑖𝑛

𝜇
− 1 < 𝜇5ℎ𝑚𝑎𝑥/(𝑙𝑜𝑔2𝑟)2

To the last equation, we can without loss of generality tighten its left hand:

ℎ𝑚𝑖𝑛

𝜇
− 1 < 𝜇5ℎ𝑚𝑎𝑥/(𝑙𝑜𝑔2𝑟)2 =⇒

ℎ𝑚𝑖𝑛

𝜇
≤ 𝜇5ℎ𝑚𝑎𝑥/(𝑙𝑜𝑔2𝑟)2

(3)

========⇒
𝑙𝑜𝑔2𝑟>0

(𝑙𝑜𝑔2𝑟)2
𝑟

≤ 𝜇6
(4)

==⇒

(𝑙𝑜𝑔2𝑟)2
𝑟

≤ 𝜖6

(𝑙𝑜𝑔2𝑟)12
=⇒

𝜖 ≥ 6

√︂
(𝑙𝑜𝑔2𝑟)14

𝑟
(6)

We have arrived at a condition for 𝜖 which, given the fact that Theorem 16 operates on arbitrary sets of jobs, i.e., for

any 𝑟 , does by no means guarantee that 𝜖 ∈ (0, 1]. Let us move forward. Recall that we are undergoing this investigation

in order to arrive at conditions which guarantee that the algorithm described in the proof of Theorem 16 runs “as it

should”. Also recall that we are for now focusing on the top branch of said proof, namely that one where (𝑙𝑜𝑔2𝑟)2 ≥ 1/𝜖 .
There, Corollary 15 is called on 𝑋𝑠 with box-height parameter 𝐻 and error parameter 𝜇. Here’s Corollary 15:

COROLLARY 15. Let 𝐻 be a positive integer box-height parameter and 𝜖 > 0 be a sufficiently small error parameter.

Given a set 𝑍 of jobs, each of height between ℎ𝑚𝑖𝑛 and 𝜖𝐻 , there exist a set 𝐵 of boxes, each of height 𝐻 , and a boxing of 𝑍

into 𝐵 such that for all x-coordinates 𝑡 ,

𝐿𝐵 (𝑡) ≤ (1 + 9𝜖)𝐿𝑍 (𝑡) +𝑂 (
𝐻 (𝑙𝑜𝑔2 (𝐻/ℎ𝑚𝑖𝑛))2

𝜖4
)

Proof. We construct such a boxing. First, round the job heights: each height ℎ is rounded up to ⌊(1 + 𝜖)𝑖 ⌋, where 𝑖 is
defined by (1 + 𝜖)𝑖−1 < ℎ ≤ (1 + 𝜖)𝑖 . Let 𝑌 denote the resulting set of rounded jobs.

Now, partition the jobs according to their heights. For each rounded height ℎ, let 𝑌ℎ denote the set of jobs of height

ℎ. Divide the heights of all jobs in 𝑌ℎ by ℎ; apply Theorem 2 with box-height parameter ⌊𝐻/ℎ⌋; and then multiply all

box heights by ℎ to get a set 𝐵ℎ of boxes of height at most 𝐻 . The output is a set 𝐵 =
⋃

ℎ 𝐵ℎ of boxes, which we can

assume are all of height 𝐻 . [...] □

A non-obvious yet key detail is that we must not call Theorem 2 with a box-height parameter equal to zero (since

zero-height boxes do not make sense). We see from the proof that that box-height parameter is determined by the size

classes to which the input jobs have been rounded up. We know that there exists a 𝑖𝑚𝑎𝑥 for which the largest jobs in 𝑍

are rounded to ℎ𝑚 = ⌊(1 + 𝜖)𝑖𝑚𝑎𝑥 ⌋. It suffices to ensure ⌊𝐻/ℎ𝑚⌋ ≥ 1:

Manuscript submitted to ACM

10 Lamprakos et al.

⌊𝐻/ℎ𝑚⌋ ≥ 1⇒

𝐻/ℎ𝑚 ≥ 1⇒

ℎ𝑚 ≤ 𝐻 ⇒

⌊(1 + 𝜖)𝑖𝑚𝑎𝑥 ⌋ ≤ 𝐻 ⇒

(1 + 𝜖)𝑖𝑚𝑎𝑥 < 𝐻 + 1
𝜖 = 𝜇
=====⇒

(1 + 𝜇)𝑖𝑚𝑎𝑥 < 𝐻 + 1 (7)

Due to the fact that Corollary 15 is called on 𝑋𝑠 (𝑍 = 𝑋𝑠), we know that for all sizes ℎ in 𝑍 :

ℎ𝑚𝑖𝑛 ≤ ℎ ≤ ⌊𝜇𝐻⌋ (8)

We can thus expand Inequality 7 with another branch on its left side, since ⌊𝜇𝐻⌋ ≤ ℎ𝑚 :

⌊𝜇𝐻⌋ ≤ (1 + 𝜇)𝑖𝑚𝑎𝑥 < 𝐻 + 1⇒

⌊𝜇𝐻⌋ < 𝐻 + 1⇒

𝜇𝐻 < 𝐻 + 1⇒

𝐻 (1 − 𝜇) > −1

The above is always true as long as 1 − 𝜇 ≥ 0⇒ 𝜇 ≤ 1. A rather sensible requirement given the fact that, overall,

Corollary 15 boxes jobs of height up to 𝜇𝐻 into 𝐻 -sized boxes.

Before examining Theorem 2, let us backtrack to consider the second execution path of Theorem 16, that where

(𝑙𝑜𝑔2𝑟)2 < 1/𝜖 . BA’s authors suggest to invoke Corollary 15 one last time, with box-height parameter 𝐻 = ℎ𝑚𝑎𝑥/𝜖 and

error parameter 𝜖 . Our analysis, however, forces us to reject this course of action. We have already shown that (i) 𝜖 may

end up greater than 1 and (ii) Corollary 15 demands an error parameter that is at most 1. An alternative is necessary.

The repeated applications of Corollary 15 during the top branch of Theorem 16 increase the minimum job height to

ℎ∗
𝑚𝑖𝑛

. We thus know that 𝑟∗ = ℎ𝑚𝑎𝑥/ℎ∗𝑚𝑖𝑛
is smaller than all the previous values of 𝑟 . As a result, 𝜇∗ = 𝜖/(𝑙𝑜𝑔2𝑟∗)2 is

the maximum value for 𝜇. What if we used 𝜇∗ in the place of 𝜖 for the last invocation of Corollary 15? Similarly with

before, we would have:

(1 + 𝜇∗)𝑖𝑚𝑎𝑥−1 < ℎ𝑚𝑎𝑥 ≤ (1 + 𝜇∗)𝑖𝑚𝑎𝑥
(9)

Demanding that the largest size class does not yield a zero box-height parameter for Theorem 2 leads us to:

⌊(1 + 𝜇∗)𝑖𝑚𝑎𝑥 ⌋ ≤ 𝐻 ⇒

(1 + 𝜇∗)𝑖𝑚𝑎𝑥 < 𝐻 + 1
𝐻=ℎ𝑚𝑎𝑥 /𝜇∗
===========⇒

(1 + 𝜇∗)𝑖𝑚𝑎𝑥 <
ℎ𝑚𝑎𝑥

𝜇∗
+ 1

Manuscript submitted to ACM

Futureproof Static Memory Planning 11

To simplify our algebra, we can once again without loss of generality prune the last inequality to (1+ 𝜇∗)𝑖𝑚𝑎𝑥 ≤ ℎ𝑚𝑎𝑥

𝜇∗ .

Dividing all members of Inequality (9) with 𝜇∗ and keeping the left side, we have
(1+𝜇∗)𝑖𝑚𝑎𝑥 −1

𝜇∗ <
ℎ𝑚𝑎𝑥

𝜇∗ . We must now

decide about the relation between (1 + 𝜇∗)𝑖𝑚𝑎𝑥
and

(1+𝜇∗)𝑖𝑚𝑎𝑥 −1

𝜇∗ . Nothing obstructs us from declaring the below:

(1 + 𝜇∗)𝑖𝑚𝑎𝑥 ≤ (1 + 𝜇
∗)𝑖𝑚𝑎𝑥−1

𝜇∗
⇒

(1 + 𝜇∗)𝜇∗ ≤ 1⇒

𝜇∗2 + 𝜇∗ − 1 ≤ 0

The corresponding equation has roots 𝜇∗
1,2

=
−1±
√
5

2
. Since 𝜇∗ is by definition positive, the only way for the inequality

to be less or equal than zero is:

𝜇∗ ≤
√
5 − 1
2

≃ 0.618033... (10)

This is a very convenient result. First of all, it abides to our requirement with respect to the error parameter given to

Corollary 15. In other words, we can use 𝜇∗ instead of 𝜖 for the last invocation of Corollary 15, as long as Inequality 10

holds. Secondly, it is independent from the input. The only problem is, 𝜇∗ is a quantity “from the future”: BA has to

execute properly and reach the low branch of Theorem 16 before 𝑟∗—and thus 𝜇∗—becomes available. In contrast, we

want to control BA’s execution via configuring quantities that are available from the outset, like 𝜖 and 𝑟 . Thankfully, 𝜇∗

is a function of 𝜖 . Having decided to use 𝜇∗ for the last Corollary 15 invocation, and knowing the necessary condition

for this to work (Inequality 10), we can impose it to 𝜖 in the here and now:

𝜇∗ ≤
√
5 − 1
2

𝜇∗= 𝜖

(𝑙𝑜𝑔
2
𝑟∗)2

============⇒

𝜖 ≤
√
5 − 1
2

(𝑙𝑜𝑔2𝑟∗)2
𝑟 ∗ < 𝑟
======⇒

(6)

6

√︂
(𝑙𝑜𝑔2𝑟)14

𝑟
≤ 𝜖 ≤

√
5 − 1
2

(𝑙𝑜𝑔2𝑟)2 (11)

There is, however, no reason to believe that Inequality 11 will be valid for all possible inputs. In order to be certain

we must make one last demand:

6

√︂
(𝑙𝑜𝑔2𝑟)14

𝑟
<

√
5 − 1
2

(𝑙𝑜𝑔2𝑟)2 ⇒

(𝑙𝑜𝑔2𝑟)14
𝑟

< (
√
5 − 1
2

)6 · (𝑙𝑜𝑔2𝑟)12 ⇒

(𝑙𝑜𝑔2𝑟)2
𝑟

< (
√
5 − 1
2

)6 (12)

According to WolframAlpha, an approximate solution for Inequality 12 is 𝑟 > 2216.53. This concludes our design.

Inequalities 11, 10 and 12 correspond to each of the three invariants listed in the beginning of this Section. Incorporating

them to our source code has allowed idealloc to treat a wide variety of inputs without any unexpected behavior.

Manuscript submitted to ACM

https://www.wolframalpha.com/input?i=log2%28x%29%5E2%2Fx+%3C+%28%28sqrt%285%29-1%29%2F2%29%5E6

12 Lamprakos et al.

3.3 Critical Point Injection

The latent invariants of the preceding Section do the “heavy lifting” of ensuring that BA works as it should. Our tour,

however, is not over. There is one last intervention that we needed to make. It is time to visit Theorem 2:

THEOREM 2. Given a set 𝑍 of jobs, each of height 1, an integer box-height parameter 𝐻 , and a sufficiently small positive

𝜖 , there exist a set 𝐵 of boxes, each of height 𝐻 , and a boxing of 𝑍 into 𝐵 such that for all x-coordinates 𝑡 ,

𝐿𝐵 (𝑡) ≤ (1 + 4𝜖)𝐿𝑍 (𝑡) +𝑂 (
𝐻𝑙𝑜𝑔2𝐻

𝜖2
𝑙𝑜𝑔2

1

𝜖
)

Proof. We are going to apply Lemma 1 many times, boxing the unresolved jobs into additional boxes as we go along.

Our general goal is to keep the wasted load (free space) in those additional boxes small at any x-coordinate.

We use the following recursive method. Given are

• A set 𝑋 of jobs and an open bounding interval 𝐼 , such that ∀𝑗 ∈ 𝑋, 𝐼 𝑗 ⊆ 𝐼 .

• A nonempty finite set of critical x-coordinates 𝑇 = {𝑖𝑛𝑓 𝐼 = 𝑡𝑜 < 𝑡1 < ... < 𝑡𝑞 < 𝑡𝑞+1 = 𝑠𝑢𝑝𝐼 } ⊆ 𝐼 ∪ {𝑖𝑛𝑓 𝐼, 𝑠𝑢𝑝𝐼 }.
• A set 𝐹 of free spaces. Each free space is an open sub-interval of 𝐼 of height 1 having endpoints in 𝑇 . Any free

space 𝑓 ∈ 𝐹 is called spanning if 𝑓 = 𝐼 and non-spanning otherwise.

Initially, 𝑋 = 𝑍 , 𝐼 = (0, 1), 𝑇 = {0, 𝑡, 1} for some arbitrary 𝑡 at which some job from 𝑍 is live, and 𝐹 = ∅. Recall that
𝐼 𝑗 = (𝑥 𝑗 , 𝑦 𝑗) denotes the interval of job 𝑗 . With the help of 𝑇 , define partition

𝑋 = (𝑅1 ∪ 𝑅2 ∪ ... ∪ 𝑅𝑞) ∪ (𝑋0 ∪ 𝑋1 ∪ ... ∪ 𝑋𝑞)

as follows. First, define 𝑋𝑖 = { 𝑗 ∈ 𝑋 : 𝐼 𝑗 ⊆ (𝑡𝑖 , 𝑡𝑖+1)} for 0 ≤ 𝑗 ≤ 𝑞.

Then define the 𝑅𝑖 ’s recursively. Define 𝑋
′ = 𝑋 \ (𝑋0 ∪ 𝑋1 ∪ ... ∪ 𝑋𝑞). Note that 𝑞 ≥ 1. Define 𝑅⌈𝑞/2⌉ = { 𝑗 ∈

𝑋 ′ : 𝑡⌈𝑞/2⌉ ∈ 𝐼 𝑗 }. Define 𝑃 to be the set of remaining jobs 𝑗 of 𝑋 ′ with 𝑦 𝑗 < 𝑡⌈𝑞/2⌉ , and define 𝑄 to be the set of

remaining jobs 𝑗 of 𝑋 ′ with 𝑡⌈𝑞/2⌉ < 𝑥 𝑗 . If 𝑃 ≠ ∅, recursively partition 𝑃 using {𝑡1, 𝑡2, ... , 𝑡⌈𝑞/2⌉−1}. Afterward, if
𝑄 ≠ ∅, recursively partition 𝑄 using {𝑡⌈𝑞/2⌉+1, 𝑡⌈𝑞/2⌉+2, ..., 𝑡𝑞}.

Now to each 𝑋𝑖 associate a set 𝐹𝑖 of intervals (free spaces), initially empty. As sections of free spaces in 𝐹 are used to

box jobs in the 𝑅𝑖 ’s, the unused fragments will be deposited into the appropriate 𝐹𝑖 ’s for use deeper in the recursion (to

box jobs in the 𝑋𝑖 ’s).

To box the jobs in the 𝑅𝑖 ’s, first apply Lemma 1 to each 𝑅𝑖 , 1 ≤ 𝑖 ≤ 𝑞, in any order; note that all jobs in 𝑅𝑖 are live at

𝑡𝑖 . For each 𝑖 , this boxes all the jobs of 𝑅𝑖 except for at most 2𝐻 ⌈1/𝜖2⌉ unresolved jobs. Now consider the set𝑈 of all

the unresolved jobs from all the 𝑅𝑖 ’s. Derive an optimal packing of 𝑈 using interval graph coloring (Recall that all jobs

are of height one). This packing has makespan 𝐿𝑈 .

Let 𝑠 (𝐹) denote the subset of spanning free spaces of 𝐹 . If |𝑠 (𝐹) | < 𝐿𝑈 , create ⌈(𝐿𝑈 − |𝑠 (𝐹) |)/𝐻⌉ boxes of height 𝐻
and horizontal extent 𝐼 . This yields 𝐻 ⌈(𝐿𝑈 − |𝑠 (𝐹) |)/𝐻⌉ new spanning free spaces; add them to 𝐹 . Now there are at

least as many spanning free spaces in 𝐹 as rows of the packing of𝑈 .

For each 1 ≤ 𝑗 ≤ 𝐿𝑈 , remove one spanning free space from 𝐹 , and use it to place all the jobs in row 𝑗of the packing.

This creates gaps, or unused portions, in the original free space, each of the form [𝛼, 𝛽] where for some 𝑖 , 𝑗 : 𝑡𝑖 < 𝛼 < 𝑡𝑖+1
and 𝑡 𝑗 < 𝛽 < 𝑡 𝑗+1; recall that 𝑡0 = 𝑖𝑛𝑓 𝐼 and 𝑡𝑞+1 = 𝑠𝑢𝑝𝐼 . For each such [𝛼, 𝛽], if 𝑖 ≠ 𝑗 then split [𝛼, 𝛽] into (𝛼, 𝑡𝑖+1),
(𝑡𝑖+1, 𝑡𝑖+2), ..., (𝑡 𝑗−1, 𝑡 𝑗), (𝑡 𝑗 , 𝛽); and add (𝛼, 𝑡𝑖+1) to 𝐹𝑖 , (𝑡𝑖+1, 𝑡𝑖+2) to 𝐹𝑖+1, ..., (𝑡 𝑗−1, 𝑡 𝑗) to 𝐹 𝑗−1, and (𝑡 𝑗 , 𝛽) to 𝐹 𝑗 .

Otherwise (𝑖 = 𝑗), simply deposit (𝛼, 𝛽) into 𝐹𝑖 . This fragments the gaps.
Manuscript submitted to ACM

Futureproof Static Memory Planning 13

Table 1. Findings and remedies applied to BA’s FUs.

BA FU Finding Remedy

Corollary 17

Does not comply with latent invariants of Theorem

16 and Corollary 15.

Input preprocessing, 𝜖-calibration (Section 5.6).

Theorem 16

1. Last Corollary 15 invocation uses 𝜖 (unsafe).

2. Yields boxes instead of offsets.

1. Use 𝜇∗ instead (Section 3.2).

2. Unbox and place (Section 4).

Theorem 2 𝑅 can be empty. Critical point injection (Section 3.3).

Corollary 15

As is, as long as the above remedies are applied. N/A

Lemma 1

Now all the jobs in all the 𝑅𝑖 ’s are boxed. Consider the unused free spaces in 𝐹 , if any. Each is of the form (𝑡𝑖 , 𝑡 𝑗) for
some 𝑖 ≠ 𝑗 . Split each such (𝑡𝑖 , 𝑡 𝑗) into (𝑡𝑖 , 𝑡𝑖+1), (𝑡𝑖+1, 𝑡𝑖+2), ..., (𝑡 𝑗−1, 𝑡 𝑗). Add (𝑡𝑖 , 𝑡𝑖+1) to 𝐹𝑖 , (𝑡𝑖+1, 𝑡𝑖+2) to 𝐹𝑖+1, ...,

and (𝑡 𝑗−1, 𝑡 𝑗) to 𝐹 𝑗−1. This passes down the remaining unused free spaces to the sub-problems.

In parallel for each ℓ = 0, 1, 2, ..., 𝑞, if 𝑋ℓ ≠ ∅, recursively apply the construction with new 𝑋 ← 𝑋ℓ , new free space

set 𝐹 ← 𝐹ℓ , new bounding interval 𝐼 ← (𝑡ℓ , 𝑡ℓ+1) and new criticall x-coordinate set 𝑇 ← {endpoints of elements of

𝐹ℓ } ∪ {𝑡ℓ , 𝑡ℓ+1}. [...] □

By now our initial point that BA is not simply an “algorithm” must be obvious. We discourage the reader from

devoting excess effort to grasping every last word of Theorem 2 (as we shall show in Section 5, some parts of it are

redundant). For the time being, it suffices to pay attention to the fact that in order for the boxing procedure to advance,

there must exist at least one critical x-coordinate in 𝑇 at which at least one job in 𝑍 is live. In other words, there must

exist at least one 𝑅𝑖 . At each recursion level, it is only jobs in 𝑅𝑖 ’s that are being boxed, some via Lemma 1, and others

via IGC. This need is made explicit at the start of the proof, where attention is drawn to “some arbitrary 𝑡 at which

some job from 𝑍 is live”. In our experience, however, it is possible deeper in the recursion for critical point sets 𝑇 to

appear carrying no such 𝑡 . In those cases, we append one more (appropriate) time point to 𝑇 .

The only remaining FU in BA’s chain is Lemma 1. To keep the main body of our paper as short as possible, and due

to the fact that Lemma 1 works “out of the box”, we have moved its definition to the Appendix.

To summarize, the entire Section 3 demonstrates our approach as regards idealloc’s core component, namely the

boxing algorithm by Buchsbaum et al. [2]. We have gone through the algorithm’s parts and limitations, and have either

presented, or hinted toward, ways to overcome said limitations. The main takeaways are listed in Table 1.

4 Unboxing and Final Placement

We have already mentioned that BA does not produce offsets, as would normally be the case if one wanted to solve

DSA. Instead Theorem 16 returns a set of equal-height, Matryoshka doll-like boxes. The problem addressed by the

present Section can be stated as: how can the outer Matryoshkas’ IGC-derived offsets be diffused all throughout the boxing’s

hierarchy until the original buffers are found and accordingly placed?

The process is sketched in Figure 6. We will be using “buffers” to refer to original buffers and “boxes” for the

Matryoshkas. Like boxing, this is a recursive procedure. Two questions are driving decisions at each level of recursion:

• Line 3: do input elements share the same size?

• Line 5: are input elements non-overlapping?

Manuscript submitted to ACM

14 Lamprakos et al.

1 Function UnboxAll(𝐽 , w)

// A set of BA-derived jobs and a

// starting offset.

input : 𝐽 = { 𝑗 | 𝑗 = (ℎ, 𝑡𝑠 , 𝑡𝑒)}, w
// A valid offset-job mapping.

output :𝑂 = {𝑜 |𝑜 ∈ N : OffsetsAreValid(J, O)}

2 𝑂 ← Init();

3 if SameSize(𝐽) then
4 return PlaceSameSizes(𝐽 ,w);

5 else if not Overlap(𝐽) then
6 for job in 𝐽 do
7 placed← UnboxAll(Unbox(𝐽), w);

8 𝑂 ← MergeOffsets(𝑂 , placed);

9 end

10 else
11 for jobs in PartitionBySize(𝐽) do
12 placed← PlaceSameSizes(jobs, w);

13 w← MaxAddr(placed);

14 𝑂 ← MergeOffsets(𝑂 , placed);

15 end

16 end

17 return 𝑂 ;

18 end

19 Function PlaceSameSizes(𝐽 ,w)
input : 𝐽 = { 𝑗 | 𝑗 = (ℎ, 𝑡𝑠 , 𝑡𝑒)}, w
output :𝑂 = {𝑜 |𝑜 ∈ N : OffsetsAreValid(J, O)}

20 𝑂 ← Init();

// All jobs have the same size.

21 for row in IGC(𝐽) do
22 placed← UnboxAll(row,w);

23 w← MaxAddr(placed);

24 𝑂 ← MergeOffsets(𝑂 , placed);

25 end

26 return 𝑂 ;

27 end

Fig. 6. Unboxing pseudocode.

Apart from buffers/boxes, a watermark is also

given as input—initialized at zero before the first ever

call. It signifies the starting offset from which place-

ment should commence. The watermark is updated

and inherited by deeper recursion levels. Hence we

ensure that the contents of each box end up placed

within their container’s boundaries.

Let us now visit all possible answers to the above

questions. If jobs share the same size, we exploit the

fact that DSA for uniform sizes is optimally solved

with IGC. The role of PlaceSameSizes is to traverse

all IGC-produced rows, place the contents of each at

the current watermark, and bump the watermark at

the row’s tip. If the jobs don’t overlap in time, the

decision is trivial. We unbox each input element and

recursively call the procedure with the same water-

mark (lines 7, 8).

Finally, if none of the above conditions hold, we

partition the jobs by size and place each subset inde-

pendently (lines 12-14). But we are not done yet! Due

to the repeated round-ups of box sizes in Corollary

15, as well as the recursive nature of Theorem 16, the

offsets produced by the above procedure are sparse.

So we view all work up to this point, i.e., BA-derived

boxing and the offsets produced by unboxing, as an

intricate sorting step according to the terminology

of Section 2.2. To finalize the output, we “squeeze”

the buffers via first-fit placement, traversing them in

increasing offset.

5 Design and Implementation

Figure 7 gives an overview of idealloc. Its design is

owed (i) to our goal of robust and high performance,

and (ii) to the inherent stochasticity of BA, due to the

critical points of Theorem 2 (see Section 3.3). Though

we have more to say on this later, keep in mind that

even the simplest of operations, namely sorting by

size, is stochastic: how should one break ties between

equal sizes? Enforced determinism, i.e., using some

unique ID for such occasions, may help with data

visualization but harms best-case fragmentation. One does not tame randomness by putting it under the rug.

Manuscript submitted to ACM

Futureproof Static Memory Planning 15

START PRELUDE
ITERS
DONE?

BOXING
(BA)

PLACE

UPDATE

NO

END

YES

Fig. 7. idealloc flow diagram.

5.1 Interface

idealloc accepts the following parameters:

• original input: a collection of jobs to place.

• worst-case fragmentation: an upper bound for the quality of the output. If that amount or less fragmentation

is achieved at any point, the execution terminates early.

• start address: base location 𝑆 to which all offsets refer. The address of a buffer with offset 𝑂 is 𝑆 +𝑂 .
• iterations: an upper bound for the total number of times the box-and-place kernel is allowed to run. If exhausted

and worst-case fragmentation is not yet beaten, the next-best result is returned.

Note that, as regards fragmentation, in our opinion the only optimal value is zero. But we have included the respective

parameter in response to allocators like minimalloc [18] and the one featured in Apache’s TVM compiler, who include

a “maximum makespan” parameter to their interfaces. We find it erroneous to decouple worst-case storage from the

input, since it is the input itself, and specifically its max load, which bounds makespan (from below, not from above).

Certain maximum makespans may not be achievable for certain inputs.

5.2 Input Representation

The fundamental data structure of idealloc is the Job. Its fields are:

• allocated size: self-explanatory.
• (start, end): the respective allocation and deallocation times. In line with DSA theory, we adopt exclusive lifetime

semantics in idealloc. This means that a job is not live at neither its start, nor its end. Numerous bugs have

crunched our nighttime due to ours not being strict enough about lifetime semantics.

• alignment: if any, the final address of the buffer is guaranteed to be a multiple of this value.

Manuscript submitted to ACM

16 Lamprakos et al.

• requested size: owed to the beginnings of idealloc being in studying malloc traces, kept because someone

else may decide to do so in the future. By knowing the difference between requested and allocated size one can

measure internal fragmentation, out of scope for this paper.

• contents: a job may be a box spawned by BA, holding other jobs inside. Both such boxes and the original buffers

of the input are represented with the same struct.

• id: self-explanatory.

Some further remarks on how we handle the input. First of all, there is a list of security checks that must be conducted

before idealloc is invoked. Zero-valued sizes are not allowed. Start- equal or greater than end-times are not allowed.

Zero-valued alignment (different than no alignment) is not allowed. Non-empty contents are not allowed. Last but not

least, we do not allow allocated sizes to be smaller than requested sizes.

5.3 Event Traversal

A common situation in idealloc is that of computations operating on subsets of buffers. In our experience, avoiding

quadratic complexity in such cases is crucial to the allocator’s execution time and scalability. Take the max load 𝐿 of

Section 2 as an example. Recall that 𝐿 amounts to the maximum amount of memory that is concurrently live at any time.

A naive quadratic solution is to traverse all allocation and deallocation times of all buffers, and for each one traverse

the buffers themselves, and aggregate the sizes of those that are live. Luckily there is a better approach.

Imagine a priority queue consisting of events: each event carries (i) a timestamp, (ii) a type, i.e., whether it marks the

allocation or deallocation of a job, and (iii) a reference to the job itself. Earlier events have precedence over later ones,

and deallocations have precedence over allocations. The max load 𝐿 of 𝑁 buffers can be computed by consuming this

priority queue once, thus by processing 2𝑁 events. We make heavy use of event traversal across idealloc and consider

it a fundamental operation. Its underlying principle is that no change of any kind occurs between consecutive events.

5.4 Working with Different Lifetime Semantics

Fellow allocators and/or benchmarks ascribe different interpretations to buffers’ intervals. For instance, XLA’s best-fit

heap simulator views jobs as live at the endpoints as well as the in-between. minimalloc is start-inclusive end-exclusive.

idealloc adopts exclusive semantics for its internal operation.

Suppose the very real scenario of needing to conduct the experiments accompanying this paper. Given the aforemen-

tioned variety of semantics in the SOTA, one needs to be certain that they are comparing apples to apples. In other

words, allocators with different semantics must agree, regarding the buffers described by a specific input benchmark, on

which pairs of buffers do or do not overlap. A necessary but not sufficient condition when pursuing such an agreement

is that the reported max load of the same dataset expressed in exclusive semantics be equal to the one reported when

using any other semantics. We make active use of this check in our measurement scripts.

Assume we are in possession of a benchmarks suite employing start-inclusive, death-exclusive semantics. We will

be referring to this interpretation as InEx from now on, and will be using In and Ex for start-inclusive-end-inclusive

and start-exclusive-end-exclusive semantics respectively. Assume, further, that we want to evaluate on this suite three

allocators: the first uses InEx, the second In, and the last one Ex. Last but not least, assume that the task of reading a

DSA solution, validating its feasibility, and reporting statistics of interest such as its max load and makespan, is carried

out by an analyzer program also using Ex semantics. This description largely resembles our real experiments setup.

Manuscript submitted to ACM

Futureproof Static Memory Planning 17

The missing component is an adapter, its input being (i) a DSA solution file, (ii) the semantics of that file and (iii) the

semantics to which the file’s contents must be transformed. By making use of this adapter, we can for example start

from an InEx dataset, feed it to the In-allocator, and then pass its output to the Ex-analyzer. Regardless from the point

of departure, the analyzer must always report the same max load and the same number of conflicts (i.e., distinct pairs

of overlapping buffers) for the same benchmark. The idealloc source code includes such an adapter. Its operating

principles are:

• In←→ InEx: add or subtract one from the buffer’s de-allocation time, depending on the direction of the arrow

• InEx←→ Ex: the two types are equivalent. The condition for conflict with a buffer allocated at 𝑎 and de-allocated

at 𝑏 is in both cases ¬(𝑥 ≤ 𝑎 ∨ 𝑦 ≥ 𝑏), where 𝑥, 𝑦 stand for the respective endpoints of some other buffer

5.5 Bootstrapping and Early Stopping

Due to its stochastic nature, the quality of solutions that idealloc may yield at each iteration exhibits great variety. In

order to waste as little time as possible on sub-optimal solutions, we use a simple bootstrapping scheme: we keep a

record of the smallest makespan achieved up to now. During final placement’s first-fit, we check whether the resulting

offset drives the buffer at hand to exceed our record. In that case, we stop, discard the present boxing, and start anew.

We initialize our bootstrapping value with what we consider to be the best heuristic available: sort by size, break

ties by lifespan, and do first-fit. A fitting name for it would be “big-rocks-first”. The bootstrapping value is updated

whenever idealloc yields a smaller makespan.

5.6 Prelude Analysis

Certain tasks need take place only once across idealloc’s flow. Before doing anything else, we bundle the following

tasks into a single event traversal: (i) check for elementary cases (Section 2.1), (ii) compute max load, minimum and

maximum height, and (iii) construct the interference graph (Section 5.7).

If any of the elementary cases holds, execution proceeds accordingly and an optimal solution is found in minimum

time. Else, idealloc must prepare to iterate on its box-and-place core (Sections 3, 4). More specifically:

• if the max-to-min height ratio 𝑟 does not comply with Inequality 12, a “dummy” job of height equal to ⌈2216.53 ·
ℎ𝑚𝑖𝑛⌉ and lifetime spanning all of the input is added to the buffers to be boxed

• bootstrapping takes place as described in Section 5.5

• the real number 𝜖 governing the boxing algorithm is configured as described below

Recall that according to Inequality 11, it is only within a specific range that 𝜖 may move. A simple iterative process is

followed to pick the final value: we initialize 𝜖 to be equal to the left arm of Ineq. 11. We run the boxing algorithm up to

the point where 𝑟∗ is computed (see Section 3.1). Next, we increase 𝜖 by 1% of the remaining range and repeat. We keep

that value which yields the smallest 𝑟∗.

5.7 Fast and Correct Final Placement

Two extra operations to what was described in Section 4 are necessary: if a “dummy” job was inserted during prelude

analysis, we ignore it during unboxing, i.e., we do not assign it any offset and proceed as if it did not exist. Secondly, we

ensure that offsets calculated in the final first-fit pass are compliant with each job’s potential alignment requirements.

Recall that we know both the start address of the range as well as each buffer’s alignment (Sections 5.1, 5.2).

Manuscript submitted to ACM

18 Lamprakos et al.

SIZE CLASS
SPLITTING

THEOREM 2

LIVENESS
SPLITTING

Ri BOXING ALLOCATE GAPS
TO Xis

THEOREM 2

Fig. 8. Illustration of parallelism opportunities as thick red dashed curves. The light blue box (left) is Corollary 15. Theorem 2 is
invoked on each size class independently. The light green box (right) is a simplified unpacking of Theorem 2. Recursive calls to self are
issued for each 𝑋𝑖 once all 𝑅𝑖 s are boxed and gaps shared. Each call is independent from the rest.

One further optimization we introduce is an interference graph, i.e., a hash map with job IDs as keys, and vectors

of concurrently live buffers as values. We use this graph during the first-fit stage, to avoid an otherwise quadratic-

complexity overlap check (to be precise, worst-case complexity is still quadratic but in practice rarely does every buffer

overlap with everyone else).

5.8 Theorem 2 Simplification

The one thing to keep in mind as regards Theorem 2 is that it is expected to box all jobs it is given by Corollary 15 into

boxes of size 𝐻 . For reasons tied to their mathematical arguments, Buchsbaum et al. must pretend that first, Corollary

15 scales jobs down to unit height and then passes them to Theorem 2 with height parameter ⌊𝐻/ℎ⌋, before scaling the

returned boxes up back to 𝐻 . idealloc is concrete evidence that the process can both be simplified and remain correct.

The actual interface used by Theorem 2 comprises: (i) the set of buffers to be boxed, (ii) the quantity ⌊𝐻/ℎ⌋, (iii) box
size 𝐻 , (iv) the usual error parameter 𝜖 , (v) the definition’s bounding interval, and (vi) the definition’s vector of critical

coordinates. There are no “free spaces” needed. Boxing happens in two places only: Lemma 1 (see Appendix) and after

grouping its unresolved jobs to rows via IGC. As long as idealloc asserts when boxing that the load of the jobs to be

boxed does not exceed the expected box height 𝐻 , execution may proceed.

Also note that, when either initializing the critical coordinates vector or injecting points to it as per Section 3.3, it

suffices to consider only those points that appear during event traversal.

5.9 Parallel Boxing

There are two opportunities for coarse-grain parallelism in the boxing flow. Both are shown on Figure 8. The first

opportunity appears in Corollary 15: the buffers of each size class can be boxed by Theorem 2 independently. The

second opportunity appears in Theorem 2, where the recursive calls for each 𝑋𝑖 can also be made in parallel. In both

cases, no dependencies between parallel tasks exist. We exploit them accordingly to minimize execution time.

Manuscript submitted to ACM

Futureproof Static Memory Planning 19

Table 2. Experimental setup used for evaluating idealloc.

ALLOCATORS
Compiler Algorithm Commit Build Remarks

XLA

Some complex best-fit

heuristic.

896c02 -O3 flag worsened performance.

MindSpore SOMAS [14] 4308a56
CMake build type “Release” improved perfor-

mance, so we kept it.

TVM hillclimb cfe1711 Same as SOMAS, Triton.

N/A minimalloc [18] 987b3c1 None.

N/A idealloc (this paper) N/A Cargo –release flag and LTO enabled.

BENCHMARK SUITES

Name Type (Domain) # of Bench-
marks

(Smallest, Largest) #
of Buffers Retrieved Via

minimalloc

TPU Inference

(Unknown)

11 (154, 454)

minimalloc GitHub

repo (“challenging”

suite).

MindSpore

NPU Training (NLP &

Computer Vision)

2 (1042, 18692)

Emails with the authors

of SOMAS [14].

In-house

ASPLOS Contest Track,

LevelDB tracing

4 (816, 567573) Custom code.

5.10 Doors to Randomness

Apart from the critical coordinate selection in the context of Theorem 2, there are numerous other spots in our source

code that behave non-deterministically in a baked-in manner. For instance, there are places where jobs have to be sorted

according to some arbitrary criterion, e.g., in reverse de-allocation time. In each such case, again to minimize execution

time, we utilize unstable sorting, which may re-order equal elements. Another example is the priority queue we are

using for event traversal, which does not guarantee that the insertion order of equal elements is preserved.

It is the systemic interaction of all these random effects that gives idealloc its stochasticity.

6 Evaluation

We ask the following research questions:

1. Superiority against toy heuristics. We have characterized idealloc as a “stochastic bootstrapped heuristic”. Does

it outperform the simplest of heuristics in terms of fragmentation?

2. Degree of randomness. Given the high degree of stochasticity elaborated in Section 5.10, how probable is that event

where applying first-fit to a completely random permutation of the input yields less fragmentation than idealloc?

3. Competence against the SOTA. Allocators must (i) produce solutions (ii) of low fragmentation (iii) in reasonable

time. We encode this requirement in the following per-benchmark grading scheme: if for any reason (e.g., segmentation

fault, floating point exception) an allocator crashes, it loses as many points as the allocators that did not. The same if it

has not terminated after 15 minutes. In the rest of cases, the allocator earns as many points as the allocators that it

outperformed. How many points does idealloc earn under this grading scheme?

Manuscript submitted to ACM

https://github.com/openxla/xla/tree/896c0289645e87e42d2e552c0be2b41d0b886adb
https://github.com/mindspore-ai/mindspore/tree/4308a56eab21700459c61db290f47e7e50f4b7f6
https://github.com/apache/tvm/tree/cfe1711934f82e56f147f2f5f9f928b5a9b92b3e
https://github.com/google/minimalloc/tree/987b3c1f9fefe3538ddffa5dc08836831efd3915
https://github.com/google/iopddl/tree/main/benchmarks

20 Lamprakos et al.

(a) iopddl-G (b) ResNet-50 (c) Pangu-2.6B

(d) iopddl-S (e) iopddl-Y (f) LevelDB

Fig. 9. Fragmentation histograms against heuristics.

4. Core latency. The interface of idealloc exposes the total number of iterations over its box-unbox-place core as a

user option (Section 5.1). How cheap is each such iteration?

5. Futureproofness. From the outset we have emphasized our interest on DSA instances of arbitrary size and com-

plexity. We want idealloc to fare well against the hardest of possible inputs. If we define hardness as the bootstrap

heuristic’s fragmentation (we will be calling that heuristic “SLFF” from this point onwards), how much better than SLFF

is idealloc as hardness grows?

The materials used for our experiments are listed in Table 2. Note that it was particularly difficult to find non-trivial

benchmarks in the sense of SLFF yielding non-zero fragmentation.

Our measurements took place on a commodity workstation with eight Intel i7-6700 cores clocked at 3.4 GHz, 128 KiB

L1 data and instruction caches, 1 MiB L2 and 8 MiB L3. The machine had 32 GiB DRAM and was running Ubuntu 22.04

inside a privileged-mode Docker container. We instrumented all allocators to report allocation time in microseconds

excluding I/O. Max memory usage was computed by processing each run’s output files and measuring makespan
4
. We

executed each benchmark-allocator pair 10 times to ensure statistical integrity. We assigned a maximum allowable time

window of 15 minutes per individual run. All measurement scripts were run with a niceness value of −20 and minimal

background noise.

In addition to the SOTA allocators, we fed each benchmark to idealloc and configured it to run for 100 iterations—

except for the LevelDB benchmark, due to whose size we used 10 iterations. In all cases, we repeated our measurements

100 times to let idealloc’s stochasticity express itself as much as possible.

4
We assume that the target device has no virtual memory and its addresses are physically contiguous. Thus measuring max memory usage offline is

accurate. Fellow publications, e.g., minimalloc [18], follow the same practice.

Manuscript submitted to ACM

Futureproof Static Memory Planning 21

(a) iopddl-G (b) ResNet-50 (c) Pangu-2.6B

(d) iopddl-S (e) iopddl-Y (f) LevelDB

Fig. 10. Fragmentation histograms against the SOTA.

6.1 Questions 1 and 2

In Figure 9 we are comparing idealloc’s fragmentation with four heuristics: the first heuristic (sizefirst) sorts the

buffers by decreasing size and then applies first-fit. It is stochastic since, as mentioned, size ties had better be solved at

random. The second heuristic (randomfirst) again applies first-fit, but this time on a random permutation of the input

buffers. sizebest and randombest are the corresponding best-fit flavors. idealloc’s superiority in all cases is evident.

As a side note, there is no clear indication w.r.t. the superiority of some heuristic over the others. Which one is best,

and how they compare to each other varies wildly across benchmarks. Thus using the same heuristic horizontally is

guaranteed to waste memory.

6.2 Question 3

From the opponent allocators, XLA uses In semantics, and minimalloc, SOMAS and TVM use InEx. idealloc, on the

other hand, uses Ex. To ensure fairness we conducted the analysis described in Section 5.4 and decided to assume that

all of our benchmarks use InEx semantics. We then took our measurements and plotted fragmentation histograms like

the ones shown in Figure 10. The respective rankings are listed in Table 3. The same table includes a summary of the

rankings formed for the minimalloc micro-benchmarks.

6.3 Question 4

We plot allocation time as a function of the buffer count in Figure 11. Particularly w.r.t. idealloc we have plotted

single-iteration latency, which includes one prelude analysis (Section 5.6) and a single box-unbox-place pass (Sections 3,

4). Regardless from the size of the input, idealloc’s core latency is faster than any alternative.

Manuscript submitted to ACM

22 Lamprakos et al.

Table 3. Fragmentation measurements and corresponding points for the minimalloc suite (aggregated) and for the rest of the
benchmarks (detailed). As regards marked failures: TVM timed out in all of the benchmarks where it failed. SOMAS timed out in
LevelDB and threw a floating point exception in iopddl-S/Y. minimalloc timed out everywhere except iopddl-G, where it segfaulted.

Benchmark (#bufs.) Allocator Fragmentation Norm. Frag. (%) Points

MINIMALLOC POINTS

XLA

N/A N/A

1

TVM 39
SOMAS 11

minimalloc 36

idealloc 18

iopddl-G (816)

XLA 54.9 MiB 1.9% 1

TVM 0 MiB 0% 4
SOMAS 8 MiB 0.3% 2

minimalloc FAILED FAILED -4

idealloc 81 KiB ∼0% 3

ResNet-50 (1042)

XLA 6.4 MiB 0.45% 1

TVM 946 KiB 0.06% 4
SOMAS 9.5 MiB 0.66% 0

minimalloc 6.1 MiB 0.42% 2

idealloc 5.5 MiB 0.38% 3

Pangu-2.6B (18692)

XLA 322.8 MiB 6.1% 2

TVM FAILED FAILED -3

SOMAS 40 MiB 0.8% 4
minimalloc FAILED FAILED -3

idealloc 135.2 MiB 2.6% 3

iopddl-S (28526)

XLA 42.5 MiB 3% 3

TVM FAILED FAILED -2

SOMAS FAILED FAILED -2

minimalloc FAILED FAILED -2

idealloc 18.9 MiB 1.3% 4

iopddl-Y (62185)

XLA 1.6 GiB 0.35% 3

TVM FAILED FAILED -2

SOMAS FAILED FAILED -2

minimalloc FAILED FAILED -2

idealloc 771.7 MiB 0.16% 4

LevelDB (567573)

XLA 160 KiB 0.6% 4
TVM FAILED FAILED -2

SOMAS FAILED FAILED -2

minimalloc FAILED FAILED -2

idealloc 198 KiB 0.8% 3

REST POINTS

XLA

N/A N/A

14

TVM -1

SOMAS 0

minimalloc -11

idealloc 20

TOTAL POINTS

XLA

N/A N/A

15

TVM 38
SOMAS 11

minimalloc 25

idealloc 38

Manuscript submitted to ACM

Futureproof Static Memory Planning 23

6.4 Question 5

Fig. 11. idealloc’s single-iteration latency versus its competition, as a
function of total buffer count. Note the interference graph’s impact at the
far end of the curve.

We see in Figure 12 that idealloc outperforms

SLFF in a steady fashion as the input hardness in-

creases. The ideal but impossible scenario would

be for the drawn line to coincide with 𝑦 = 𝑥 , i.e.,

for boxing to always eliminate fragmentation com-

pletely. It nevertheless stays close enough.

7 Discussion

We began our exposition by declaring our inter-

est in real allocators and how they behave under

pressure. We have now presented evidence that

(i) there is a gap in the SOTA as regards effective

and scalable solutions, and (ii) idealloc fills that

gap. That said, we are aware of the subtleties in-

volved in the process toward making such strong

statements. The first half of this Section examines

said subtleties from close distance. We then discuss

meaningful future activities to either improve or

utilize our allocator.

7.1 Results and Their Interpretation

Fig. 12. idealloc’s mean improvement over its bootstrap heuristic as a
function of the bootstrap heuristic’s own fragmentation.

An important point to agree on is whether the se-

lected allocators listed in Table 2 reflect what we

mean by “DSA SOTA”. Our initial measurements

also included three greedy algorithms from LiteRT

(formerly TensorFlow Lite) [21] and one from Ope-

nAI’s Triton [27]. Furthermore, XLA features a sec-

ond allocator based on heap simulation
5
, mimick-

ing an on-line OS allocator. TVM has heuristics

similar to sizefirst besides the hillclimb algo-

rithm
6
. IREE’s one and only algorithm is a sort-

by-allocation-time best-fit heuristic
7
. We included

all these as well, but their performance was poor

and we decided to keep our tables and figures from

getting too crowded. The only “popular” deep learn-

ing compiler we did not inspect was Meta’s Glow,

5
https://github.com/openxla/xla/blob/main/xla/service/heap_simulator/heap_simulator.h

6
https://github.com/apache/tvm/blob/cfe1711934f82e56f147f2f5f9f928b5a9b92b3e/src/tir/usmp/algo/greedy.cc

7
https://github.com/iree-org/iree/blob/15ca58e19ec76fab94c4aba8f75091c532282d51/compiler/src/iree/compiler/Dialect/Stream/Transforms/LayoutSlices.cpp

Manuscript submitted to ACM

https://github.com/openxla/xla/blob/main/xla/service/heap_simulator/heap_simulator.h
https://github.com/apache/tvm/blob/cfe1711934f82e56f147f2f5f9f928b5a9b92b3e/src/tir/usmp/algo/greedy.cc
https://github.com/iree-org/iree/blob/15ca58e19ec76fab94c4aba8f75091c532282d51/compiler/src/iree/compiler/Dialect/Stream/Transforms/LayoutSlices.cpp

24 Lamprakos et al.

an omission owed to lack of time, not of meticulousness. ILP formulations of DSA are known to be inferior due to poor

scalability [17, 18]. We thus believe to have cast a wide and informed enough gaze.

Let us now visit some more specific issues:

7.1.1 Grading System Fairness. Since the crux of our argument is the rankings of Table 3, asking if our grading system is

fair is a fair question. We used a tournament comprising many races as a model. The results of each race, i.e., benchmark,

are translated to points for each allocator. Whoever has collected the most points after the last race is the tournament’s

winner. This model is fair to the extent that the points translation scheme is.

Our scheme rewards allocators with as many points as the allocators they beat. The number includes both those that

yielded worse fragmentation and those that failed. The only objection we can think of is that differences in fragmentation

are not accounted for. However, the same holds in an actual racing tournament: individual times don’t matter.

Moreover, our scheme punishes failing allocators with as many points as the allocators that did not fail. Why did we

not use a fixed punishment, i.e., losing one point at each failure? Imagine a tournament of 𝑁 contestants. Focus on

contestants 𝐴 and 𝐵. In the first race of the tournament, 𝐴 finishes first and 𝐵 is the only contestant that did not finish

at all. In the second race, 𝐵 is the only finisher. Under a fixed-punishment scheme, 𝐴 and 𝐵 would end up with 𝑁 − 2
points. Under our scheme, the respective points would be 𝑁 − 2 and zero. Which one is fairest?

It depends on the type of tournament winner we are searching for. Since almost everyone finished it, the first race of

our example was rather easy (think about iopddl-G in Table 3). The converse holds for the second race (think LevelDB).

So do we want to incentivize “laziness” in easy races for the sake of potential triumph in hard ones? To the authors of

this paper, a positive answer sounds like gambling.

7.1.2 On Normalized Fragmentation. Despite including normalized values for fragmentation in Table 3, i.e., absolute

fragmentation divided by the benchmark’s max load, we do not encourage their use. In the age of “memory walls” [6]

memory savings are valuable regardless from necessary memory investment. The reason is simple: most of the time,

memory is shared. Savings that look insignificant in proportion to max load can still be used to host data that is foreign

to the problem at hand. Only when considering things in isolation do absolute quantities lose their weight.

If the above was not convincing enough, consider that by relying on normalized fragmentation, wasting 1 KiB under

a max load of 10 KiB looks identical to wasting 1 GiB under a max load of 10 GiB. Both cases have 10% normalized

fragmentation, but the second case is clearly more damaging.

7.1.3 Core vs. Total Latency. As noted by Figure 11’s caption, the plotted blue line stands for idealloc’s single-iteration

latency. For LevelDB, however, we configured idealloc to repeat 10 iterations, and for the rest of the benchmarks 100.

The following remarks apply:

• our intention was to highlight the fact that each idealloc iteration takes minimum time compared to the SOTA

• even when scaled to its real latency (Figure 13), idealloc (i) is up to two orders of magnitude faster than TVM,

and (ii) ends up faster than XLA in LevelDB’s context

• if total allocation time is the user’s main concern, off-the-shelf heuristics are the way to go. Otherwise trading

off latency for lowering fragmentation stands to reason

7.1.4 Hardness Definition. While forming our research questions for Section 6, we did not explain our decision to

define hardness as SLFF’s fragmentation. We hope to give a convincing answer here.

Manuscript submitted to ACM

Futureproof Static Memory Planning 25

Fig. 13. idealloc’s total latency versus its competition.

The context was that of “futureproofness”: that

arbitrarily hard DSA instances will emerge was,

as stated in Section 1, our founding assumption.

Our prime interest is to ensure that idealloc will

be able to deal with them. The hardness we have

in mind concerns the topology of an instance, that

is, the complexity of the landscape formed by the

co-existence of a given set of buffer conflicts and

the corresponding buffer sizes. For example, an

instance where all buffers overlap is not at all

hard/complex/non-trivial: even bump allocation

would yield zero fragmentation!

We posit that a reasonable way to gauge the hard-

ness of an instance is to measure the fragmentation

incurred by a simple yet decent heuristic. Consider

the problem of packing one’s suitcase before a long trip: does it not make sense to start with the biggest of items, and

work our way down? If we place all of our items in this fashion, our baggage was not hard to treat. If on the other hand

the “big-rocks-first” strategy fails, our baggage is as hard as the total size of items that we were forced to leave out.

Choosing SLFF as our hardness measure is the DSA equivalent of what we described.

7.2 Proposed Future Work

7.2.1 Sampling Many 𝜖-values. idealloc’s boxing core is governed by the error parameter 𝜖 (Section 3.1), which must

be confined into an input-specific range of values (Section 3.2). Our current approach is to conduct a preprocessing

step where we iterate on the aforementioned range and finally set 𝜖 to that value which minimizes the resulting

boxing’s max-to-min height ratio (Section 5.6). There is no concrete reason behind this strategy, only the intuition that

deeper boxing recursions lead to lower fragmentation. A promising alternative would be to sample 𝜖 at random, thus

eliminating significant overhead from our prelude analysis and adding more variety to the placements explored.

7.2.2 Statistical Inference. Given idealloc’s stochastic nature (Section 5.10), it would be good to have an estimate of

how many iterations are needed to become certain that most of the solution space has been explored. This implies

a statistical inference component observing each iteration’s makespan and using it to refine an on-line distribution.

However, such observability would incur performance overhead: to monitor all makespans we would have to remove

early stopping (Section 5.5). Moreover, extra time would be needed for ste statistical inference core itself.

7.2.3 Randomness Taming. It is tempting to think of some meta-optimization over (i) the selection of 𝜖 (Sections 3.1,

5.5) and (ii) Theorem 2 critical points (Section 3.3). This would help us avoid “useless” iterations. The main problem

with setting up such a mechanism is that our current implementation has non-deterministic elements that are outside

our control (Section 5.10). On top of that, meta-optimization would need to keep and act on some global state, which

would need to be synchronized between threads. In turn this would make everything slower.

Manuscript submitted to ACM

26 Lamprakos et al.

7.3 A Note on Time and Space

For the entirety of this text we have been interpreting the horizontal dimension as “time” and the vertical one as “space”.

We owe this to the fact that our research has its roots in computer systems’ memory allocation. Nevertheless, other

interpretations could enable using idealloc (or any similar piece of related work) in completely different contexts. For

instance, one could view the horizontal axis as a spectrum of frequencies, and the vertical one as time. Each “buffer”

could thus encode a radio host’s request to broadcast over a specific band of frequencies for a specific amount of time.

Solving DSA in that context would ensure that (i) all hosts receive a slot for their show and (ii) the overall spectrum is

“reserved” for as little time as possible.

Room for nuance exists even within the standard time/space interpretation. Whether the vertical axis stands for

physical or virtual addresses is left to the hands of the end user. Whether time is wall clock time or, e.g., the total

number of bytes allocated by a program, or the indices of a topologically sorted computation graph’s nodes, again this

decision belongs to the user. DSA itself is indifferent to these decisions. In order for its output to be useful, however, the

following invariants must hold: (i) both dimensions must be contiguous, i.e., elements that overlap in one dimension

cannot do so in the other and (ii) elements are fixed in one dimension, and are allowed to “slide” only along the other.

8 Conclusion

Static memory planning is an NP-complete problem with applications of great potential. Existing solutions are either

scalable or memory-efficient. We have presented idealloc, an implementation designed with low fragmentation, high

performance and scalability in mind. Along the way we have reported numerous insights that may prove useful to

practitioners and theorists in the future.

We have open-source idealloc and the benchmarks used
8
.

Acknowledgments

This work has been supported with funding from the European Union’s Horizon research and innovation programme

under grant agreement No. 101070374.

References
[1] Sakshi Agrawal, Priyankar Ghosh, Gaurav Kumar, and Tripuraneni Radhika. 2023. Memory Footprint Optimization for Neural Network Inference in

Mobile SoCs. In 2023 IEEE Women in Technology Conference (WINTECHCON). 1–6. https://doi.org/10.1109/WINTECHCON58518.2023.10277304

[2] Adam L. Buchsbaum, Howard Karloff, Claire Kenyon, Nick Reingold, and Mikkel Thorup. 2003. OPT versus LOAD in dynamic storage allocation.

In Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing (San Diego, CA, USA) (STOC ’03). Association for Computing

Machinery, New York, NY, USA, 556–564. https://doi.org/10.1145/780542.780624

[3] Michael R Garey and David S Johnson. 1979. Computers and intractability. Vol. 174. freeman San Francisco.

[4] Jordan Gergov. 1996. Approximation algorithms for dynamic storage allocation. In Algorithms — ESA ’96, Josep Diaz and Maria Serna (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 52–61.

[5] Jordan Gergov. 1999. Algorithms for compile-time memory optimization. In Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete
Algorithms (Baltimore, Maryland, USA) (SODA ’99). Society for Industrial and Applied Mathematics, USA, 907–908.

[6] Amir Gholami, Zhewei Yao, Sehoon Kim, Coleman Hooper, Michael W. Mahoney, and Kurt Keutzer. 2024. AI and Memory Wall. IEEE Micro 44, 3
(2024), 33–39. https://doi.org/10.1109/MM.2024.3373763

[7] Cong Guo, Rui Zhang, Jiale Xu, Jingwen Leng, Zihan Liu, Ziyu Huang, Minyi Guo, Hao Wu, Shouren Zhao, Junping Zhao, and Ke Zhang. 2024.

GMLake: Efficient and Transparent GPU Memory Defragmentation for Large-scale DNN Training with Virtual Memory Stitching. In Proceedings of
the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2 (La Jolla, CA, USA)
(ASPLOS ’24). Association for Computing Machinery, New York, NY, USA, 450–466. https://doi.org/10.1145/3620665.3640423

8
https://github.com/cappadokes/idealloc

Manuscript submitted to ACM

https://doi.org/10.1109/WINTECHCON58518.2023.10277304
https://doi.org/10.1145/780542.780624
https://doi.org/10.1109/MM.2024.3373763
https://doi.org/10.1145/3620665.3640423
https://github.com/cappadokes/idealloc

Futureproof Static Memory Planning 27

[8] Akifumi Imanishi and Zijian Xu. 2024. A Heuristic for Periodic Memory Allocation with Little Fragmentation to Train Neural Networks. In

Proceedings of the 2024 ACM SIGPLAN International Symposium on Memory Management (Copenhagen, Denmark) (ISMM 2024). Association for

Computing Machinery, New York, NY, USA, 82–94. https://doi.org/10.1145/3652024.3665508

[9] H.A. Kierstead. 1991. A polynomial time approximation algorithm for dynamic storage allocation. Discrete Mathematics 88, 2 (1991), 231–237.
https://doi.org/10.1016/0012-365X(91)90011-P

[10] H. A. Kierstead. 1988. The Linearity of First-Fit Coloring of Interval Graphs. SIAM Journal on Discrete Mathematics 1, 4 (1988), 526–530.

https://doi.org/10.1137/0401048 arXiv:https://doi.org/10.1137/0401048

[11] Richard E Korf, Michael D Moffitt, and Martha E Pollack. 2010. Optimal rectangle packing. Annals of Operations Research 179 (2010), 261–295.

[12] Christos Panagiotis Lamprakos, Sotirios Xydis, Francky Catthoor, and Dimitrios Soudris. 2023. The Unexpected Efficiency of Bin Packing Algorithms

for Dynamic Storage Allocation in the Wild: An Intellectual Abstract. In Proceedings of the 2023 ACM SIGPLAN International Symposium on Memory
Management (Orlando, FL, USA) (ISMM 2023). Association for Computing Machinery, New York, NY, USA, 58–70. https://doi.org/10.1145/3591195.

3595279

[13] Christos Panagiotis Lamprakos, Sotirios Xydis, Peter Kourzanov, Manu Perumkunnil, Francky Catthoor, and Dimitrios Soudris. 2023. Beyond

RSS: Towards Intelligent Dynamic Memory Management (Work in Progress). In Proceedings of the 20th ACM SIGPLAN International Conference
on Managed Programming Languages and Runtimes (Cascais, Portugal) (MPLR 2023). Association for Computing Machinery, New York, NY, USA,

158–164. https://doi.org/10.1145/3617651.3622989

[14] Ioannis Lamprou, Zhen Zhang, Javier de Juan, Hang Yang, Yongqiang Lai, Etienne Filhol, and Cedric Bastoul. 2023. Safe Optimized Static Memory

Allocation for Parallel Deep Learning. In Proceedings of Machine Learning and Systems, D. Song, M. Carbin, and T. Chen (Eds.), Vol. 5. Curan, 305–324.

https://proceedings.mlsys.org/paper_files/paper/2023/file/676d8419c61f299feb88c28b40edd3b1-Paper-mlsys2023.pdf

[15] Maksim Levental. 2022. Memory planning for deep neural networks. arXiv preprint arXiv:2203.00448 (2022).
[16] Martin Maas, David G. Andersen, Michael Isard, Mohammad Mahdi Javanmard, Kathryn S. McKinley, and Colin Raffel. 2020. Learning-based

Memory Allocation for C++ Server Workloads. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20). Association for Computing Machinery, New York, NY, USA, 541–556.

https://doi.org/10.1145/3373376.3378525

[17] Martin Maas, Ulysse Beaugnon, Arun Chauhan, and Berkin Ilbeyi. 2022. TelaMalloc: Efficient On-Chip Memory Allocation for Production

Machine Learning Accelerators. In Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 1 (Vancouver, BC, Canada) (ASPLOS 2023). Association for Computing Machinery, New York, NY, USA, 123–137.

https://doi.org/10.1145/3567955.3567961

[18] Michael D. Moffitt. 2024. MiniMalloc: A Lightweight Memory Allocator for Hardware-Accelerated Machine Learning. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 4 (Vancouver, BC, Canada) (ASPLOS
’23). Association for Computing Machinery, New York, NY, USA, 238–252. https://doi.org/10.1145/3623278.3624752

[19] Christian Navasca, Martin Maas, Petros Maniatis, Hyeontaek Lim, and Guoqing Harry Xu. 2023. Predicting Dynamic Properties of Heap Allocations

using Neural Networks Trained on Static Code: An Intellectual Abstract. In Proceedings of the 2023 ACM SIGPLAN International Symposium on
Memory Management (Orlando, FL, USA) (ISMM 2023). Association for Computing Machinery, New York, NY, USA, 43–57. https://doi.org/10.1145/

3591195.3595275

[20] Deok-Jae Oh, Yaebin Moon, Do Kyu Ham, Tae Jun Ham, Yongjun Park, Jae W. Lee, Jung Ho Ahn, and Eojin Lee. 2022. MaPHeA: A Framework for

Lightweight Memory Hierarchy-aware Profile-guided Heap Allocation. ACM Trans. Embed. Comput. Syst. 22, 1, Article 2 (Dec. 2022), 28 pages.
https://doi.org/10.1145/3527853

[21] Yury Pisarchyk and Juhyun Lee. 2020. Efficient memory management for deep neural net inference. arXiv preprint arXiv:2001.03288 (2020).
[22] J. M. Robson. 1971. An Estimate of the Store Size Necessary for Dynamic Storage Allocation. J. ACM 18, 3 (July 1971), 416–423. https:

//doi.org/10.1145/321650.321658

[23] J. M. Robson. 1974. Bounds for Some Functions Concerning Dynamic Storage Allocation. J. ACM 21, 3 (July 1974), 491–499. https://doi.org/10.1145/

321832.321846

[24] Joe Savage and Timothy M. Jones. 2020. HALO: post-link heap-layout optimisation. In Proceedings of the 18th ACM/IEEE International Symposium
on Code Generation and Optimization (San Diego, CA, USA) (CGO ’20). Association for Computing Machinery, New York, NY, USA, 94–106.

https://doi.org/10.1145/3368826.3377914

[25] Moritz Scherer, Luka Macan, Victor J. B. Jung, Philip Wiese, Luca Bompani, Alessio Burrello, Francesco Conti, and Luca Benini. 2024. Deeploy:

Enabling Energy-Efficient Deployment of Small Language Models on Heterogeneous Microcontrollers. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 43, 11 (2024), 4009–4020. https://doi.org/10.1109/TCAD.2024.3443718

[26] Taro Sekiyama, Takashi Imamichi, Haruki Imai, and Rudy Raymond. 2018. Profile-guided memory optimization for deep neural networks.

arXiv:1804.10001 [cs.DC] https://arxiv.org/abs/1804.10001

[27] Philippe Tillet, H. T. Kung, and David Cox. 2019. Triton: an intermediate language and compiler for tiled neural network computations. In Proceedings
of the 3rd ACM SIGPLAN International Workshop on Machine Learning and Programming Languages (Phoenix, AZ, USA) (MAPL 2019). Association for

Computing Machinery, New York, NY, USA, 10–19. https://doi.org/10.1145/3315508.3329973

[28] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. 1995. Dynamic storage allocation: A survey and critical review. In Memory
Management, Henry G. Baler (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–116.

Manuscript submitted to ACM

https://doi.org/10.1145/3652024.3665508
https://doi.org/10.1016/0012-365X(91)90011-P
https://doi.org/10.1137/0401048
https://arxiv.org/abs/https://doi.org/10.1137/0401048
https://doi.org/10.1145/3591195.3595279
https://doi.org/10.1145/3591195.3595279
https://doi.org/10.1145/3617651.3622989
https://proceedings.mlsys.org/paper_files/paper/2023/file/676d8419c61f299feb88c28b40edd3b1-Paper-mlsys2023.pdf
https://doi.org/10.1145/3373376.3378525
https://doi.org/10.1145/3567955.3567961
https://doi.org/10.1145/3623278.3624752
https://doi.org/10.1145/3591195.3595275
https://doi.org/10.1145/3591195.3595275
https://doi.org/10.1145/3527853
https://doi.org/10.1145/321650.321658
https://doi.org/10.1145/321650.321658
https://doi.org/10.1145/321832.321846
https://doi.org/10.1145/321832.321846
https://doi.org/10.1145/3368826.3377914
https://doi.org/10.1109/TCAD.2024.3443718
https://arxiv.org/abs/1804.10001
https://arxiv.org/abs/1804.10001
https://doi.org/10.1145/3315508.3329973

28 Lamprakos et al.

[29] Pinxue Zhao, Hailin Zhang, Fangcheng Fu, Xiaonan Nie, Qibin Liu, Fang Yang, Yuanbo Peng, Dian Jiao, Shuaipeng Li, Jinbao Xue, Yangyu Tao, and

Bin Cui. 2025. MEMO: Fine-grained Tensor Management For Ultra-long Context LLM Training. Proc. ACM Manag. Data 3, 1, Article 53 (Feb. 2025),
28 pages. https://doi.org/10.1145/3709703

APPENDIX

A Lemma 1

What follows is a verbatim copy of Lemma 1 by Buchsbaum et al. [2]. As in the main text, we represent parts of the

proof that are of no concern to implementing the FU with “[...]”.

LEMMA 1. Given a set 𝑌 of unit-height jobs, all live at some fixed x-coordinate 𝑡 , an integer box-height parameter 𝐻 ,

and a sufficiently small 𝜖 > 0, there exist a subset 𝑌 ′ of 𝑌 , |𝑌 − 𝑌 ′ | ≤ 2𝐻 ⌈1/𝜖2⌉, a set 𝐵 of boxes, each of height 𝐻 , and a

boxing of 𝑌 ′ into 𝐵 such that at any x-coordinate 𝑢,

𝐿𝐵 (𝑢) ≤ 𝐿𝑌 ′ (𝑢) + 4𝜖𝐿𝑌 (𝑢)

Proof. [...] partition the jobs of 𝑌 into strips [...]. The first two strips are defined as follows.

• Create a vertical strip consisting of the 𝐻 ⌈1/𝜖2⌉ jobs with the earliest starting x-coordinates (or fewer if there

are not enough jobs)

• If any jobs remain, create a horizontal strip consisting of the 𝐻 ⌈1/𝜖2⌉ jobs that remain with the latest ending

x-coordinates (or fewer if not enough jobs remain)

Define 𝑌 ′ to be the set of all jobs not in the first vertical or first horizontal strip. [...] Now partition the jobs of 𝑌 ′ as

follows. As long as there are jobs remaining, repeat the following.

• Create a vertical strip consisting of the 𝐻 ⌈1/𝜖⌉ jobs that remain with the earliest starting x-coordinates (or fewer

if there are not enough jobs left)

• If any jobs remain, create a horizontal strip consisting of the 𝐻 ⌈1/𝜖⌉ jobs that remain with the latest ending

x-coordinates (or fewer if not enough jobs remain)

Now, for every vertical strip of 𝑌 ′, take the jobs in order of decreasing ending x-coordinate, in groups of size 𝐻 (the

last group of the last strip possibly smaller), and box them. Similarly, for every horizontal strip of 𝑌 ′, take the jobs in

order of increasing starting x-coordinate, in groups of size 𝐻 (the last group of the last strip possibly smaller), and box

them. [...] □

We call the jobs in 𝑌 − 𝑌 ′ unresolved jobs.

B The Impossibility of Theorem 19

As above, we begin with a verbatim copy of Theorem 19 [2]:

THEOREM 19. For all 𝜖 > 0, there exists a polynomial-time (2 + 𝜖)-approximation algorithm for DSA.

Proof. Consider some small positive 𝛿 to be determined. Let 𝑋 = 𝑋𝑠 ∪ 𝑋𝑙 , where 𝑋𝑠 is the set of jobs of height

less than 𝛿7𝐿 and 𝑋𝑙 = 𝑋 \ 𝑋𝑠 . Use Theorem 16 with error parameter 𝛿 to pack the jobs in 𝑋𝑠 , yielding a (1 + 𝑐′𝛿)-
approximation for some constant 𝑐′. Apply the (1 + 𝛿)-approximation algorithm implied by Theorem 12 with the same

𝛿 to pack the jobs in 𝑋𝑙 , which is possible because the load divided by the minimum height is at most 1/𝛿7, which is

certainly at most𝐶 𝑙𝑜𝑔2𝑛/𝑙𝑜𝑔2𝑙𝑜𝑔2𝑛 for𝐶 = 1/𝛿7; this yields a (1+𝛿) approximation. Choose 𝛿 so that 𝛿 (𝑐′ + 1) = 𝜖 . □

Manuscript submitted to ACM

https://doi.org/10.1145/3709703

Futureproof Static Memory Planning 29

The impossibility of writing the above as a computer program function is evident. The parameter 𝛿 governs all steps,

but is only determined in the end. Nevertheless, given the liberties we have taken with the rest of BA in order to make

it functional, future attempts to “hack” Theorem 19 might prove fruitful.

Manuscript submitted to ACM

	Abstract
	1 Introduction
	1.1 Against a Common Misunderstanding
	1.2 Motivation and Related Work
	1.3 Contributions

	2 Dynamic Storage Allocation
	2.1 Elementary Cases
	2.2 Heuristics

	3 The Boxing Algorithm by Buchsbaum et al.
	3.1 Overview
	3.2 Latent Invariants
	3.3 Critical Point Injection

	4 Unboxing and Final Placement
	5 Design and Implementation
	5.1 Interface
	5.2 Input Representation
	5.3 Event Traversal
	5.4 Working with Different Lifetime Semantics
	5.5 Bootstrapping and Early Stopping
	5.6 Prelude Analysis
	5.7 Fast and Correct Final Placement
	5.8 Theorem 2 Simplification
	5.9 Parallel Boxing
	5.10 Doors to Randomness

	6 Evaluation
	6.1 Questions 1 and 2
	6.2 Question 3
	6.3 Question 4
	6.4 Question 5

	7 Discussion
	7.1 Results and Their Interpretation
	7.2 Proposed Future Work
	7.3 A Note on Time and Space

	8 Conclusion
	Acknowledgments
	References
	A Lemma 1
	B The Impossibility of Theorem 19

